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Although lifestyle changes are considered key to the 
treatment of patients with T2DM, the biguanide 
drug metformin remains an important agent in the 

control and possible prevention of this disease.[1] Metformin 
is believed to target the core defect of insulin resistance in 
T2DM, increasing insulin receptor sensitivity, and reducing 
hepatic glucose overproduction.[2] At the molecular level, 
metformin is believed to inhibit mitochondrial respiration 
at complex I of the electron transport chain, resulting in 
increased levels of AMP, and leading to the upregulation of 
AMPK.[3] AMPK acts to restore energy balance by turning 
on catabolic processes that generate ATP and turning off 
processes that consume ATP.[4] Through this and other 
mechanisms, metformin’s impact on metabolism has been 
repeatedly shown to have benefits in cardiovascular diseases, 

inflammatory states, and of special interest to us, cancer 
treatment and prevention.[5-7]

Metformin has been shown to increase overall survival in 
T2DM patients suffering from colon, lung, gastroesophageal, 
thyroid, and prostate cancers.[8-10] Although many mechanisms 
are currently being investigated, a key pathway that has been 
shown to recur in multiple cancers is the mTOR pathway. 
This pathway regulates cell growth and proliferation and 
is an important stimulator of anabolic processes including 
protein synthesis.[11] Metformin targets this pathway through 
its actions on AMPK and inhibits mTOR signaling, leading to 
robust antineoplastic activity.[12,13] This review will detail the 
functions of mTOR and examine metformin’s effects through 
it on cancers in T2DM patients.
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ABSTRACT

Metformin is used as a first-line therapy in individuals suffering from type 2 diabetes mellitus (T2DM) and has multiple 
mechanisms of action through which it impacts metabolism at the physiologic and molecular levels. In addition, metformin 
has been shown to positively impact outcomes in patients with T2DM suffering from many different forms of cancer. One 
pathway that seems to recur in many different cancers is the mammalian target of rapamycin (mTOR) pathway. The TOR 
protein, divided into the mTOR complex 1 (mTORC1) and complex 2 (mTORC2) subunits, upregulates mRNA translation and 
promotes anabolic processes through the phosphorylation of several downstream proteins. The activity of the mTOR pathway 
inhibits autophagy, the process of protein degradation in times of nutrient stress, thereby increasing processes that upregulate 
cell growth. Metformin modulates this pathway through the indirect activation of AMP-activated kinase (AMPK), a protein 
that inhibits mTOR and increases autophagy. The activity of metformin through AMPK has been shown to sensitize locally 
advanced non-small-cell lung carcinoma (LA-NSCLC) to radiotherapy (RT) and progression-free survival in patients with 
T2DM. Moreover, mTORC2 activity was found to be necessary for prostate cancer tumorigenesis, suggesting the viability of a 
therapy that directly targets the mTOR pathway. Understanding the antineoplastic activity of metformin, through both mTOR 
and other key pathways, may help in the development of adjunct cancer treatments in T2DM and beyond.
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The TOR protein, which acts as a downstream component of 
the PI3K/AKT pathway, is a Ser/Thr kinase belonging to the 
phosphoinositide 3-kinase (PIKK) family.[14] This family of 
kinases, which includes ataxia-telangiectasia mutated (ATM), 
ATM and rad3-related (ATR), DNA-dependent protein kinase 
catalytic subunit (DNA), suppressor with morphological effect 
on genitalia family member (SMG1), and mTOR regulates an 
organism’s response to metabolic, environmental, and genetic 
stress.[15] Abnormalities in these proteins are associated with 
immunodeficiency, chromosomal aberrations, and increased 
incidence of cancer. In one study, silencing of ATR and ATM 
resulted in a statistically significant decrease in senescence-
associated beta-galactosidase, further suggesting the role of 
PIKK proteins as a site of tumor suppression.[16] As a member 
of this family of proteins, mTOR influences cell proliferation 
by upregulating protein synthesis and modulating ribosome 
biogenesis.[17,18] Furthermore, mTOR has been shown to 
inhibit protein degradation in nutrient-rich conditions; 
a process called autophagy.[19] Mutations leading to the 
chronic activation of mTOR have been documented in many 
malignancies, and it is believed to play an important role in 
the tumorigenesis and progression of some cancers.

mTOR is composed of two distinct dimeric subunits known 
as mTORC1 and complex 2 (mTORC2).[20] mTORC1 is 
the rapamycin-sensitive component of mTOR and forms 
a functional unit with its accessory protein raptor.[21] Their 
combined activity phosphorylates eIF-4E binding protein 
1 (4E-BP1), undoing its repression of mRNA translation 
by allowing for the binding of initiation factor eIF4G.[22] 
mTORC1 and raptor also work to phosphorylate s6 kinase 
1 (S6K1), which further promotes translation through its 
kinase activity on downstream substrates.[23] The activity 
of mTORC1 is guided by nutrient availability, growth 
factor signaling, energy, and stress, allowing it to play an 
important role as a regulator of autophagy.[24] In starving 
conditions, low levels of ATP activate AMPK, which goes 
on to phosphorylate raptor.[25] The phosphorylated raptor 
binds protein 14-3-3, leading to the inhibition of mTORC1, 
and the induction of autophagy. In nutrient-rich conditions, 
mTOR activity is promoted by feeding and increasing levels 
of insulin, leading to its activation, and the cessation of 
autophagy.[26] mTORC1 regulation of anabolic metabolism is 
fundamental for cell growth, and its abnormal activation has 
been implicated in 80% of human cancers.[27] mTORC2, the 
rapamycin-insensitive portion of mTOR, acts as a mediator of 
cytoskeletal organization and polarity alongside its accessory 
protein rictor. A study utilizing Saccharomyces cerevisiae 
found that TOR2 knockout samples arrested in the G2/M 
phase of the cell cycle,[28] revealing that the mTOR pathway’s 
effect on growth is intrinsically tied to both metabolism and 
cell cycle progression. The regulation of mTORC2 remains a 
topic of debate, but it is believed to be influenced by growth 
factor activity, including insulin stimulation. Together, 
mTORC1 and mTORC2 integrate environmental cues that 

signal local conditions and prevent the cell from depleting its 
valuable resources during food scarcity.

Although there are multiple prospects in shaping this 
pathway in the case of malignancy, metformin is of particular 
interest due to its multivalent effects. Metformin indirectly 
upregulates AMPK, which is normally active during 
starvation and fasting conditions, leading to the inhibition 
of mTOR through multiple mechanisms.[4] In addition to 
the direct phosphorylation of the raptor accessory protein, 
AMPK phosphorylates tuberous sclerosis complex 2. In 
conjunction with tuberous sclerosis complex 1, this set 
of proteins inactivates S6K1 and promotes the function 
of 4E-BP1, thereby inhibiting the upregulation of mRNA 
translation by mTOR.[29] Metformin has also been found 
to inhibit mTORC1 independently of AMPK and TSCs. In 
response to amino acid abundance, Rag GTPases interact with 
raptor, leading to the clustering of mTORC1 near the nucleus 
and its activation by Ras homolog enriched in brain.[30] This 
nutrient-centric response was shown to be inhibited by the 
presence of biguanides, which are believed to inhibit GTPase 
activity and prevent perinuclear aggregation.[31] In addition 
to metformin’s effects on cell growth, it has recently been 
observed that this inhibition of the mTOR pathway may 
also contribute to cancer cell apoptosis. A study found that 
breast cancer cells plated in low glucose medium (5.5 mM) 
and treated with metformin (10 mM) over a period of 
48 h showed significant levels of cytotoxicity and mTOR 
activation.[32] Interestingly, this model revealed that the 
apoptotic effect was heavily reliant on glucose availability, 
with high glucose mediums (12.5 mM and higher) showing 
significantly less cytotoxicity. Moreover, the high glucose 
medium did not alter the activation of the mTOR pathway, 
as shown by similar levels of phospho-mTOR and phosphor-
RPS6 across experimental models, suggesting that other 
mechanisms involving metformin’s metabolic activity were 
also at work.[32]

The pronounced antineoplastic effects of metformin through 
the mTOR pathway can be traced through multiple cancers 
and have even been found in particularly malignant species 
including non-small-cell lung cancer. In patients with 
LA-NSCLC, metformin use in conjunction with chemo-RT 
was associated with significantly improved progression-free 
survival.[33] This synergistic effect was followed in an in vitro 
study, which found that metformin improved the sensitivity 
of lung cancer cells to RT, even at low micromolar doses 
(5–100 µM).[34] This response was found to be mediated 
through enhanced activation of ATM and AMPK, and 
overall suppression of the Akt-mTOR-4EBP1 pathway. The 
sensitization effect is particularly impressive in light of the 
traditionally poor outcomes associated with RT in NSCLC. 
Furthermore, it was found that samples treated with RT and 
metformin expressed twice as much sustained activation 
of AMPK versus RT or metformin alone, suggesting that 
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combination therapies in T2DM patients may optimize the 
longevity of antitumor activity.

Reducing the activity of mTOR has been theorized to be 
particularly effective in cancers that manifest through 
the PI3K/Akt pathway, of which mTOR is a downstream 
component.[35] This signaling pathway influences cell 
growth and is susceptible to activating mutations or loss 
of tumor suppression. The loss of PTEN, a key tumor 
suppressor that functions as a phosphatase, has been 
closely associated with the dysfunction of this pathway 
and has been found in nearly 70% of prostate cancers.[36] 
In knockout mutations of PTEN, large accumulations of 
phosphatidylinositol (3,4,5)-triphosphate (PtdIns(3,4,5)
P3) result in the concentration of protein kinase B (Akt), 
a substrate of mTOR activity. The phosphorylation of 
abundant Akt by mTOR is believed to greatly contribute to 
the malignant potential of cells with this mutation. A study 
done on PTEN knockout mice in 2009 found that mTORC2 
activity was necessary for Akt phosphorylation and the 
eventual tumorigenesis of cancer in prostate epithelium 
with this mutation.[37] It was also shown that mice with only 
partial loss of the rictor gene were protected from tumor 
formation, with only 1 in 10 heterozygous models showing 
visible tumors. Moreover, an age-matched comparison of 
prostate tissues between wild type and rictor knockout 
samples revealed no differences in histology, suggesting 
that therapies that target mTORC2 and rictor function may 
have limited damaging effects.[37]

Metformin’s ability to reduce the function of the mTOR 
pathway through activation of AMPK serves an important 
role in understanding its antineoplastic effects. Although 
mTOR inhibition through rapamycin has been found to 
have toxic side effects, the potential for a tolerable adjunct 
therapy that works through this pathway may exist in the 
form of the biguanides. Moreover, it has also been shown 
that metformin’s effects on cancer are not limited to mTOR: 
Its impact on cellular respiration has been found to reduce 
the Warburg effect and negatively impact the growth of 
cancer stem cells.[38] With malignant conditions being more 
common in T2DM patients, metformin’s application may 
serve a protective effect, whether through the PI3K/Akt/
mTOR pathway or through a different channel.[39] The use of 
metformin or a unique derivative to combat malignancy may 
eventually be possible regardless of diabetic status.
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